Short Bio
I'm an architect/engineer trying to bridge the gap between design and engineering.
I'm also interested in purely geometric problems found in architectural design.
I received a PhD from the University of Tokyo for my research about Dynamic Relaxation method and constraint conditions.
After that I worked for a Tokyo-based Computer Graphics and User Interface research group led by Takeo Igarashi, and had my work about Airy stress function-based form-finding approach accepted from SIGGRAPH (2015).
I worked for SOM in the US from 2015 to 2020 as an architect.
Contact
masaaki[at]mikity.jp.net
(or find me in Facebook/LinkedIn)
Research Gate author profile
Mendeley author profile
Projects
Radon (code written in pure C# is provided)
A NURBS-based finite element shell analysis (isogeometric analysis) tool.

Visit Radon
Minilla (code written in pure C# is provided)
A NURBS-based sensitivity analysis tool.It optimizes the shape by looking at the 'sensitivity' of the linear stiffness matrix.

Visit Minilla
King Ghidorah (code written in pure C# is provided)
A novel NURBS-based form-finding method for tension-compression mixed type shells.This is a continuation of Mothra, but is more accessible and reproducible by many.

Visit King Ghidorah
Mothra
A NURBS-based form-finding method for compression-only shells. This work was presented at SIGGRAPH 2015.Piecewise smooth Airy stress functions are computed using a second-order conic optimization solver and used to calculate stress tensors.

Visit Mothra
Sprout
To make curves and surfaces 3d-printable
Visit Sprout
geodesicFractal
A simple algorithm to generate geodesics and its application to architectural design
Visit geodesicFractal
Ricecooker (Suspended)
A set of custom components of Grasshopper that supports computational mechanics.
Visit Ricecooker
Publications in English, Peer-reviewed
Transactions on Graphics (Proceedings of SIGGRAPH)
- M. Miki, T. Igarashi. and P. Block, Paramertic Self-supporting Surfaces via Direct Computation of Airy Stress Functions, ACM Transactions on Graphics (TOG), vol. 34, no. 4, 2015 (to apppear).
International Journal for Numerical Methods in Engineering
- M. Miki, S. Adriaenssens, T. Igarashi, and K. Kawaguchi, The geodesic dynamic relaxation method for problems of equilibrium with equality constraint conditions, Int. J. Numer. Meth. Engng,99, pages 682–710, 2014.
IASS (Journal of the International Association for Shell and Spatial Structures)
- M. Miki, K. Kawaguchi, EXTENDED FORCE DENSITY METHOD FOR FORM FINDING OF TENSION STRUCTURES,Journal of the International association For Shell and Spatial Structures, 423, 2010, pp.291-303.
Programming Techniques
- Multiquadric function
- Example codes of Bezier and B-spline surface (GHPython)
- Switching between 32 bit and 64bit external DLLs (C#)
- Kangarooing with Python scripting (GHPython)
- Drawing geodesics on a torus (GHPython)
- Drawing geodesic fractals on implicit surfaces (GHPython)
- Construct a thin shell from a mesh surface (GHPython)
Python and Grasshopper sessions in G30 (Old information)
Information and supplementary materials
Tensors, static Mechanics, and differential geometry (Japanese only but slowly translated to English.)
Remind that there are two types of multiplications between vectors; row vector $\times$ column vector = scalar, and column vector $\times$ row vector = matrix.
The former is called inner product. The latter is called…, there is no name.
The good start point of learning tensors is to find out the name of this product.
- Inner product
- Dyadic product
- Tensor calculous
- First fundamental form
- Covariant basis and contravariant basis
- Unit tensor
- Surface
- Geodesics
- 解析力学第一章静力学
- 仮想仕事の原理(解析力学注釈)
- 棒の力学 (連続体の力学入門)
- 連続体の力学(ボールドシンボル)
- 極小曲面
- 連続体の力学(添字表記)
- 積分可能条件/歪の適合条件
Portfolio
Flickr: http://www.flickr.com/photos/mikity/sets/
Vimeo:https://vimeo.com/user12601176/videos
--
Publications in English, without Review
Proceedings of IASS
- M. Miki, A simple method for geodesics generation on implicitly represented surfaces, IASS2014, Brasilia, 2014.
Proceedings of ECCOMAS MEMBRANE
- M. Miki, K. Kawaguchi, Direct Minimization Approaches on Static Problems of Membranes, 2010, Eccomas Membrane.
Proceedings of WCSMO 9
- M. Miki, K. Kawaguchi, FUNDAMENTAL STUDY OF DIRECT MINIMIZATION ON STATIC PROBLEMS OF MEMBRANES
Proceedings of CJK-OSM 6
- M. Miki, K. Kawaguchi, Comparison of Foregoing Methods on Form-Finding of Tension Structures, 6th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, 2010.
Awards
- 8th Hangai Prize / IASS, Oct. 2010
Publications in Japanese, Reviewed
構造工学論文集 (Journal of Structural Engineering)
- 三木優彰, 川口健一, 張力構造の形状決定における応力密度法の拡張に関する基礎的考察, 構造工学論文集, vol. 56(B), 2010, pp. 533-538.
- 三木優彰, 川口健一, 張力構造の形態解析と汎関数に関する基礎的考察, 構造工学論文集, vol. 55(B), 2009, pp. 35-40.
日本建築学会構造系論文集 (Journal of Structural and Construction Engineering)
- 三木優彰, 川口健一, 三項法と双対推定, 日本建築学会構造系論文集, Vol. 77, No. 674, 2012, pp. 611-618.
- 川口健一, 柯宛伶, 三木優彰, 付帯条件付き極小曲面と一般化最急降下法に関する研究, 日本建築学会構造系論文集, Vol. 73, No. 632, 2008, pp. 1773-1777.
膜構造論文集 (日本膜構造協会)
- 三木優彰, 川口健一, 張力構造の形態解析と汎関数に関する基礎的考察, 膜構造研究論文集, 2008.
Publications, Japanese, without Review
コロキウム構造形態の創生と解析
- 三木優彰, 川口健一, 形態解析に対する現代微分幾何の導入, コロキウム構造形態の創生と解析, 2010.
- 三木優彰, 川口健一, 張力構造の形状決定における既往の研究調査と 拡張型応力密度法に関する基礎的考察, コロキウム構造形態の創生と解析, 2009.
- 三木優彰, 川口健一,張力系構造物の形態解析と多様な汎関数の与える形状に関する基礎的考察, コロキウム構造形態の創生と解析, 2008.
日本建築学会学術講演梗概集
- 三木優彰, 川口健一, 張力構造の形状決定問題における既往の定式化の基礎的な比較と考察, 日本建築学会学術講演梗概集., 2010.
- 三木優彰, 川口健一, 張力構造の形状決定における応力密度法の拡張と,汎関数の選択に関する考察, 日本建築学会学術講演会梗概集, vol. B-1, 2009, pp. 823-824.
- 三木優彰, 川口健一, 柯宛伶, 付帯条件付極小曲面の解曲面と石鹸膜実験に関する基礎的考察, 日本建築学会学術講演梗概集 , vol. B-1, 2008, pp. 767-768.
- 三木優彰, 川口健一, 自己釣り合い力を有する立体構造における応力密度法の拡張に関する基礎的研究, 日本建築学会学術講演梗概集, vol. B-1, 2007, pp. 221-222.
その他
- 三木優彰, 川口健一, 応力密度法と汎関数の停留に基づいた張力構造の形状決定問題に関する基礎的考察, 計算工学講演会論文集, vol. 14, 2009, pp. 105-108.
- 三木優彰, 川口健一, 汎関数を用いた張力構造の形態解析例について, 宇宙構造材料シンポジウム, 2008.
Awards
- コロキウム構造形態の解析と創生2011優秀講演、2011年10月
- 日本建築学会大会シェル・空間構造部門優秀発表賞、2010年12月
- コロキウム構造形態の解析と創生2010形態創生コンテスト佳作、 2010年10月
- 東京大学大学院工学系研究科長賞、 2009年3月